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Abstract:

Endocrine disruptors are man-made or naturally occurring chemical substances, upon exposure, alter the male reproductive health by interfering
with hormonal homeostasis and spermatogenesis. Several studies have supported the hypothesis that a decrease in sperm count over the past few
decades  is  due  to  exposure  to  environmental  contaminants  possessing  estrogenic  or  anti-androgenic  properties.  Bisphenol  A,  phthalates,
alkylphenols, and polychlorinated biphenyls are some of the endocrine-disrupting chemicals commonly present in our day-to-day products that
have been shown to pose a significant threat to reproductive health. Many chemicals directly or indirectly affect the endocrine systems, altering
metabolism, sex differentiation, growth, stress response, gender behavior, and reproduction. The endocrine pathway disruption is possible via
membrane receptors or nuclear receptors and inhibition of enzymatic pathways. The declining male reproductive health has been linked to an
increased presence of chemical contaminants in our environment in the form of pesticides and plastics. The effect of endocrine disruptors on
reproductive  health  remains  a  real  issue  considering  public  health.  This  review gives  a  recent  update  on  environmental  chemicals  that  have
endocrine-disrupting potential and their effect on the male reproductive system.
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1. INTRODUCTION

In recent decades, several chemical and biological agents
have been shown to interfere with various metabolic pathways,
leading to development, growth, and reproduction alterations.
Endocrine  disruptors  are  exogenous  agents  that  can  interfere
with  the  production,  release,  transportation,  metabolism,
binding, action, or elimination of natural hormones in the body
needed  to  maintain  homeostasis  and  regulate  the
developmental  processes  of  an  organism  [1].  Endocrine-
disrupting  chemicals  (EDC)  are  a  heterogeneous  group  of
substances that have been under consideration for the past three
decades due to their  possible harmful effects on wildlife and
human [2]. Humans and animals are exposed to a wide range of
chemical  substances  from the  environment,  contributing to  a
complex exposure situation in our day-to-day lives. Most of the
reported  effects  on  wildlife  are  based  on  the  observation  of
aquatic organisms and have been linked to the concentration of
pollutants along the food chain. In humans, there is increasing
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evidence  that  the  birth  sex  ratio  is  altered  in  areas  close  to
industry  and  exposed  to  environmental  and  industrial
chemicals [3]. Epidemiological studies support the hypothesis
that human male reproductive disorders have been increasing
over  the  past  few  decades  in  relation  to  the  increase  in
endocrine  disruptors  in  our  environment  [4,  5].

Exposure to EDC has been linked to several reproductive
disorders,  including  infertility,  testicular  germ  cell  cancer
(TGCC), one of the most prevalent cancers in young men, and
congenital developmental defects such as cryptorchidism and
hypospadias [6]. Interestingly, exposure to endocrine disruptors
during fetal, neonatal, and adult life plays a significant role in
perturbing  normal  reproductive  function  and  development.
Increased  exposure  to  these  chemicals  has  decreased
reproductive function and the average sperm counts [7, 8]. The
existence  of  specific  receptors  in  target  cells  allows  the
hormone-mimicking  effect  of  endocrine  disruptors.  Even
though  some  toxic  substances,  such  as  polychlorinated
biphenyls  and  polybrominated  diphenyl  ether,  are  banned  in
many countries, many of these substances can still be detected
in  considerable  amounts  in  our  environment  [9].
Multigenerational  and  transgenerational  effects  on
reproduction  have  been  reported  in  both  male  and  female
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rodents following exposure to endocrine-disrupting chemicals
[10 - 12]. This brief review investigates the possible effects of
environmental  chemicals  that  have  endocrine-disrupting
potential  and  their  effect  on  the  male  reproductive  system.

1.1. Endocrine Disruptors (EDs)

The endocrine disruptors are a group of chemicals either
occurring  naturally  or  released  into  our  environment  due  to
man-made  activities.  EDs  mimic  or  interfere  with  the
endocrine  system,  thereby  altering  normal  development  and
causing abnormalities in reproductive health. EDs are present
in  several  products,  and  some  of  them  are  potentially
hazardous.  Unknowingly,  we are exposed to these chemicals
every day.  The term EDs has been used to describe a highly
heterogeneous  group  of  substances  that  could  be  either
toxicants  or  toxins that  can disrupt  the action of  endogenous
hormones.  Some  include  industrial  solvents,  by-products  of
industrial  processes,  plasticizers,  pesticides,  pharmaceutical
agents, phytoestrogens, and heavy metals. EDs are detected in
air, soil, drinking water, food, cosmetics, household products,
electronic devices, and textiles. Some EDs are highly persistent
and lipophilic,  so they accumulate in the body and appear in
bodily fluids.

1.2. Human Exposure to Endocrine Disruptors

Some  well-known  examples  of  endocrine  disruptors,
similar to experimental rodents found in human bodily fluids,
include bisphenol A, phthalates, PCBs, dioxins, alkylphenols,
etc.  Even  though  many  chemicals  possessing  endocrine
disrupting properties  have been banned or  restricted in some
countries, they are still in use in other countries, and exposure
occurs  due  to  their  presence  in  our  environment  at  a
considerable  level.  For  example,  even  though  the  use  of
alkylphenols  is  restricted  in  the  European  Union  and  is  still
found  in  a  considerable  amount  in  our  environment  [13].
Several  endocrine  disruptors  are  detected  in  human  urine,
serum,  amniotic  fluid,  breast  milk,  and  semen  [14  -  17].
Bisphenol  A  is  one  of  the  examples  of  endocrine-disrupting
chemicals  present  in  the  bodily  fluid  of  humans  in  several
instances [18]. Men exposed to dioxins show a more significant
number  of  morphologically  abnormal  sperm  and  low  linear
motility  [19,  20].  Increased  Exposure  to  polychlorinated
biphenyls  (PCBs)  is  associated  with  decreased  sperm  count,
motility,  and  normal  morphology  [21,  22].  Exposure  to
organochlorine  pesticides  such  as  DDT  has  been  shown  to
decrease normal sperm morphology, sperm count, volume, and
motility [21, 23, 24], whereas organophosphate exposure has
been shown to reduce the semen volume and increase pH [25,
26]. These findings in humans indicate that EDC exposure does
affect human semen quality in a way that is similarly modeled
by rodents in other studies.

1.3. Mechanism of Action of Endocrine Disruptors on the
Male Reproductive System

EDs can modify the action of endogenous hormones and
deregulate  hormonal  balance  through  multiple  mechanisms.
Phthalates,  BPA,  dioxins,  and  PCBs  are  some  of  the  well-

known EDs shown to decrease semen quality [19 - 21, 23 - 27].
They behave as imperfect ligands, activating or inhibiting the
nuclear  hormone  receptors’  functions,  such  as  estrogen,
androgen,  progesterone,  retinoid,  and  thyroid  receptors.  EDs
can  also  act  as  transcriptional  co-activators  and  inhibit
enzymatic pathways of steroid biosynthesis.  Monoethylhexyl
phthalate (MEHP), the reactive metabolite of di (2-Ethylhexyl)
phthalate  (DEHP),  activates  the  peroxisome  proliferator-
activated receptor (PPAR) α and PPARγ, leads to stimulation
of retinoid x receptor (RXR) and PPAR to compete for binding
sites on DNA and leads to inhibition of transcription of enzyme
aromatase involved in sexual development. PPAR diminishes
the steroidogenic proteins and leads to low sperm quality [28,
29]. Steroidogenic acute regulatory protein (StAR) is regulated
by cAMP and mediates the rate-limiting step in steroidogenesis
by  the  transportation  of  cholesterol  into  Leydig  cells'
mitochondria  [30].  MEHP decreases  the  production  of  StAR
protein and leads to a reduction in cholesterol transport. Apart
from inducing oxidative stress in Leydig cells,  exposure to a
high  level  of  MEHP  inhibits  the  activities  of  steroidogenic
enzymes such as 3β and 17β hydroxysteroid dehydrogenases,
thereby  altering  testosterone  biosynthesis  [31,  32].  MEHP
affects  spermatogenesis  by  decreasing  the  number  of  Sertoli
cells and its interaction with gonocytes and triggers testicular
apoptosis  by increasing Fas ligand expression [33 -  35].  The
male reproductive system can be disturbed at different phases
of a lifetime.  Androgens are the essential  hormones required
for  the  normal  development  and  differentiation  of  Wolffian
ducts into the epididymis, vas deferens, and seminal vesicles.
Dihydrotestosterone  is  produced  from  testosterone  by  5α-
reductase,  an  important  hormone  required  for  the
masculinization  of  external  genitalia  and  the  prostate  [36].
BPA  affects  sperm  quality  by  the  upregulation  of  the  aryl
hydrocarbon  receptor  mRNA  level,  which  induces  the
expression  of  the  CYP1  gene,  which  encodes  the  aromatase
enzyme. Hence, a balanced hormonal environment is required
for the normal development of the male reproductive system.
Abnormal development of testes in fetal and neonatal life has
long-term  effects  on  sperm  production  [37].  Prepubertal
exposure  to  endocrine-disrupting  chemicals  has  negative
consequences  on  reproductive  function,  as  the  blood-testis
barrier in humans is developed just before puberty [38]. Thus,
the  effects  of  endocrine-disrupting  chemicals  mediated  via
activation or inhibition of androgen and estrogen receptors are
the  leading  cause  of  adverse  effects  on  male  reproductive
function. Estrogenic endocrine-disrupting chemicals exert more
negative  effects  via  the  induction  of  oxidative  stress.  In
addition,  recently,  possible  negative  actions  on  progeny
through  toxic  epigenetic  mechanisms  have  been  found.
Epigenetic  modifications  include  heritable  changes  in  gene
expression  without  any  change  in  DNA  sequence.  These
changes include DNA methylation, histone modifications, and
non-coding RNA expression. The early developmental period
is  susceptible  to  epigenetic  mechanisms  as  the  rate  of  DNA
synthesis is maximum [39, 40]. The possible epigenetic action
of  EDs  in  humans  is  supported  only  by  in  vitro  cell  culture
studies  and  more  in  vivo  and  human  studies  are  needed  to
confirm it.
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Table 1. Endocrine-disrupting chemicals and their impact on the male reproductive system.

Endocrine Disruptors Sources Effect on Male Reproduction
Bisphenol A Polycarbonate plastics and epoxy resins Reduced sperm concentration, motility, and normal morphology

and arrest spermatogenesis at meiosis [83 - 86].
Phthalates Plasticizers, vinyl flooring, lubricating oils, and

personal-care products (soaps, shampoos, hair sprays)
Reduced fertility and semen quality parameters and reduced
anogenital distance, reproductive abnormalities [33, 87 - 89]

Dioxins Incomplete combustion of organic material by forest
fires or volcanic activity, emissions from municipal solid
waste and industrial incinerators, chlorine bleaching
process used by pulp and paper mills

Reduced normal sperm morphology, lowered testosterone level,
and limits prostate gland growth [90 - 93].

Pesticides Occupational Exposure as well as Exposure from
gardens and lawns, agriculture, drift from spraying, and
pesticide residues on certain fruits and vegetables

Reduced sperm concentration, motility, and normal morphology
alters Sertoli cell function and damages spermatozoa [94 - 97]

Triclosan a widely-used antimicrobial in personal care products Alters the morphology of sperm, and further research is
necessary to conclude [98, 99]

Heavy metals like
cadmium, lead

Cigarette smoke, release from phosphate fertilizer, waste
incineration process, paints, etc.

Structural damage to seminiferous tubule hinders Leydig cell
development and function, low sperm count, and motility [100 -
103].

Phytoestrogen Mainly from food Androgen insufficiency with under masculinization of the male
urogenital tract and lowers sperm count [104 - 106]

Polychlorinated
biphenyls

Cutting oils, lubricants, and electrical insulators in
transformers and capacitors

Damages Sertoli cells, affects sperm motility and sperm count
[107 - 109]

Alkylphenol Used as precursors to detergents, additives for fuels and
lubricants, polymers, and as components in phenolic
resins, emulsifiers

Low sperm count, motility and reduced testosterone
biosynthesis [110, 111].

2.  IMPACT  OF  ENDOCRINE-DISRUPTING
CHEMICALS ON MALE REPRODUCTIVE HEALTH

Several endocrine-disrupting chemicals have been shown
to  alter  male  reproductive  functions,  either  directly  or
indirectly  competing  for  the  same  hormone  receptors.
Furthermore,  they  also  inhibit  the  enzymes  involved  in
steroidogenesis and the synthesis of other factors required for
normal  spermatogenesis.  This  review  discusses  some  of  the
most common endocrine disruptors and their effects on male
reproductive functions (Table 1).

2.1. Bisphenol A (BPA)

BPA  is  commonly  used  in  the  manufacturing  of
polycarbonate  plastics  and  epoxy  resins  and  is  found  in  a
variety of food containers such as hard, rigid plastics and the
epoxy-based inner coating of canned foods. Exposure to BPA
mainly via consuming contaminated food and drinking water,
while  exposure  from  the  environment,  domestic  supplies,
medical  equipment,  and  occupational  sources  can  also  occur
[41, 42]. BPA is one of the most extensively studied endocrine-
disrupting  chemicals  that  mimic  natural  estrogen.  Estrogen
plays a critical role in the development of the brain, mammary
gland, and testis,  interference of BPA with estrogen activity,
especially  during  early  development,  results  in  permanent
changes  that  affect  reproductive  functions  later  in  life  [43].
Even though they have a  weak affinity  to  estrogen receptors
(ERs), they can bind to and stimulate them. BPA acts primarily
by  mimicking  the  effect  of  estrogen,  modifying  DNA
methylation  [44]  and  modulating  the  activities  of  several
enzymes,  and  subsequently  induces  metabolic  diseases,
spermatogenesis defects, and/or infertility in males [45]. It has
also  been  observed  that  frequently  exposed  males  to  epoxy
resins  have  higher  urinary  BPA  concentrations  and  are

associated  with  slightly  lower  FSH  concentrations  [46].
Increased BPA concentration is  associated with  lower  sperm
concentration, motility, morphology and higher levels of DNA
damage  [47].  BPA  is  a  nonsteroidal  estrogen  that  impedes
nuclear estrogen receptors in different targets in the body [48].
Androgen  level  is  inversely  associated  with  urinary  BPA
concentration in men of proven fertility and has no association
with semen quality [46]. BPA impairs Sertoli cell function by
impeding  the  expression  and  localization  of  tight  junction
proteins  [49  -  51]  as  well  as  indirect  actions  through  the
induction  of  epigenetic  mechanisms  and  DNA
hypermethylation. Exposure to BPA during prenatal, perinatal,
and adult either through oral route or subcutaneous injections
cause  developmental  abnormalities  such  as  genitourinary
anomalies,  decreased  epididymal  weight,  daily  sperm
production,  or  increased  prostate  weight  [52  -  54].  Prenatal
exposures  to  BPA  increase  the  size  of  the  preputial  glands,
reduce the size of the epididymides, and decrease the efficiency
of  sperm  production  in  mice  [54].  Perinatal  exposure  also
causes infertility, daily sperm production and count reduction,
and motility [55, 56]. Exposure to BPA prevents the action of
anti-Müllerian hormone on Müllerian ducts of the developing
fetus [57], leading to cause the failure of testicular descending
[58]. The activities of steroidogenic enzymes such as 3β- and
17β-hydroxysteroid  dehydrogenase  decrease  following  BPA
exposure,  in  both  rat  and  human  testicular  microsomes,
together with inhibition of 17α-hydroxylase/17, 20-lyase [59].
BPA  induces  Sertoli  cell  apoptosis  [60]  via  induction  of
caspase-3  [61].  Sertoli  cell  plays  a  pivotal  role  in
spermatogenesis  under  the  influence  of  FSH;  therefore,
modulation of the Sertoli cells by BPA directly or indirectly via
inhibition  of  FSH  synthesis  [46]  may  impair  reproductive
function  in  exposed  males.  Occupational  exposure  to  high
levels  of  BPA  causes  sexual  dysfunction,  characterized  by
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reduced  sexual  desire  and  more  significant  erectile  and
ejaculatory difficulties [62]. A cross-sectional pilot study [63]
has shown that workers exposed to BPA show altered sperm
density  and  have  a  negative  correlation  between  BPA
concentration  in  blood  and  the  percentage  of  normal  sperm,
suggesting  the  negative  influence  of  BPA on  semen  quality.
Male partners of subfertile couples seeking treatment from the
Vincent  Andrology  Lab  at  Massachusetts  General  Hospital
have  shown  a  correlation  between  BPA  exposure,  increased
DNA damage in spermatozoa, and reduced semen quality [47].

2.2. Phthalates

Phthalates  are  used  as  plasticizers,  and  are  present  in
hundreds of products, including vinyl flooring, lubricating oil,
and  personal  care  products.  Due  to  endocrine-disrupting
properties,  phthalates  are  well-known  to  cause  reproductive
and  developmental  abnormalities  [64].  They  exert  their  anti-
androgenic  action  by  hindering  testosterone  synthesis  in
Leydig  cells,  resulting  from cytochrome  CYP17  dysfunction
[65]. Exposure to di (n-butyl) phthalate alters gene expression
patterns  that  regulate  cholesterol  and  lipid  homeostasis  or
insulin signaling, which is responsible for lower testosterone
synthesis  in  fetal  rat  testis  (Barlow et  al.,  2003).  In  a  rodent
study,  prenatal  exposure  to  phthalates  induces  specific
developmental  and  reproductive  abnormalities  such  as
hypospadias,  undescended  testes,  malformations  of  the
epididymis,  vas  deferens,  seminal  vesicles,  and  prostate,
reduced  sperm  counts  and  testicular  cancer  that  have  been
identified as a ‘testicular dysgenesis syndrome’ or ‘phthalate
syndrome’  [65,  66].  Dibutyl  phthalate  administered  during
pregnancy and lactation shows the reduced anogenital distance
in male rodents [67]. Oral administration of di-(2-ethylhexyl)
phthalate  in  pre-pubertal  rats  has  been  shown  to  increase
testicular apoptosis and loss of seminiferous epithelium [34].
There is a strong correlation between anogenital distance and
maternal urinary concentrations of phthalate metabolites, and
prenatal  exposure  to  phthalates  has  been  shown  to  alter  the
anogenital  distance  in  boys  [67].  However,  a  Danish  cohort
(2010-2012)  study  has  shown  that  there  are  no  consistent
associations  between  any  prenatal  phthalate  exposure  to
anogenital  distance  or  penile  width  in  the  infant  [68].  A
prospective  Danish-Finnish  cohort  study  on  cryptorchidism
from 1997 to 2001 has shown that the reproductive hormone
profiles  and  phthalate  exposures  in  newborn  boys  are  in
accordance with rodent data and suggests that the development
of  human  Leydig  cells  and  their  function  may  also  be
susceptible  to  perinatal  exposure  to  some  phthalates  [17].
Exposure  to  phthalates  decreases  male  fertility  [38],  a  short-
term in vitro incubation of spermatozoa with the phthalates has
been  shown  to  decrease  sperm  motility,  while  extended
incubation of 96 hr, causes sperm cytotoxicity [7]. An inverse
association has been reported between increasing concentration
of  urinary  mono  (2-Ethylhexyl)  phthalate  (MEHP)  and
circulating levels of testosterone, estradiol, and free androgen
index [69]. In the body, phthalates are rapidly hydrolyzed by
the  enzyme  esterase  in  the  gut  and  other  tissues  into
monoesters,  the  active  molecules.  For  example,  DEHP
metabolizes to its monoester metabolite, mono-(2-Ethylhexyl)
phthalate  (MEHP),  and  DBP  is  converted  into  mono-butyl

phthalate,  with  a  high  concentration  of  phthalates  reducing
motility, whereas it is cytotoxic in long-term cultures [7]. DBP
could  repress  steroidogenesis  in  testes  of  mice  and  rats;  no
effects have been displayed in human xenografts for a range of
DBP  concentrations  [70,  71]  shows  significant  individual
variations. The concentration of phthalates in biological fluids
in  human  phthalate  exposure  has  also  been  positively
correlated with reactive oxygen species (ROS) production and
increased  DNA  sperm  damage  [72].  A  few  epidemiological
studies  examined  the  detection  of  phthalate  metabolites  and
their association with human testicular function [73], and have
shown  that  there  is  a  weak  correlation  between  urinary
metabolites  of  phthalate  and  lower  sperm  concentration,
motility, and morphology [73]. However, sperm DNA damage
increases  in  accordance  with  the  urinary  levels  of  phthalate
monoester and oxidative metabolites [74]. In utero exposure to
phthalates  has  been  shown  to  induce  ‘testicular  dysgenesis
syndrome’  [75  -  77]  and  abnormal  aggregation  of  the  fetal
Leydig cells [78], an occurrence of intratubular Leydig cells, a
reduction of fetal testosterone production [75, 79] and Leydig
cell Insl3 gene expression [80]. Furthermore, in utero exposure
to  phthalates  induces  increased  Sertoli  cell  proliferation  by
altering the ubiquitination pathway [81]. In vitro exposure to
metabolites  of  phthalates,  MEHP  significantly  inhibits  the
proliferation  and  differentiation  of  stem  Leydig  cells  [82].
Increased  concentrations  of  phthalates  and  their  metabolites
alter sperm concentration, motility, and morphology by various
mechanisms;  however,  further  studies  are  warranted  to
correlate exposure to phthalates and male reproductive health.

2.3. Alkylphenols (AP)

Alkylphenols (AP) are present in our environment in the
form of isomers, and it becomes challenging when identifying
and quantifying each isomer. The consequences of endocrine
disruption by AP have been studied substantially in laboratory
rodents by subjecting them to 4-n-nonylphenol (NP) for up to
the third generation [112]. Sub-acute exposure of juvenile rats
to  NP  causes  testicular  damage  and  depletion  in
spermatogenesis  [113],  and  a  notable  increase  in  the  rate  of
Sertoli  cell  apoptosis  has  also been observed in  vitro  studies
with  NP  [114].  Several  isomers  of  NP  have  also  hindered
testosterone  biosynthesis  by  inhibiting  testicular
steroidogenesis in rats [115]. Gestational Exposure to NP has
been shown to alter the epididymal weight [116].

2.4. Persistent Organochlorine Pollutants (POPs)

POPs  are  a  large  group  of  chemicals  that  include
polychlorinated  biphenyls  (PCB),  polychlorinated
dibenzofurans (PCDFs), and polychlorinated dibenzo-dioxins
(PCDDs),  and  the  pesticide  dichlorodiphenyltrichloroethane
(DDT).  PCBs  are  very  stable  mixtures  of  organochlorine
chemicals  that  are  resistant  to  extreme  temperature  and
pressure;  therefore,  they  are  used  widely  in  electrical
equipment  like  capacitors  and  transformers  as  well  as  in
hydraulic  fluids,  heat  transfer  fluids,  lubricants,  and
plasticizers. Upon Exposure, PCBs are generally metabolized
to phenols along with the formation of intermediates such as
arene  oxide  via  the  P450  microsomal  monooxygenase  system.
Due to its electrophilic nature, arene oxide covalently binds to
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nucleophilic cellular macromolecules such as DNA, RNA, and
proteins  and  induces  DNA  strand  breaks.  Most  of  the  toxic
effects caused by PCDDs and PCDFs are mediated by the aryl
hydrocarbon receptor (AHR), a ligand-activated transcription
factor.  Dioxins  are  a  class  of  chemicals  (polychlorinated
dibenzo-p-dioxins)  formed  as  by-products  of  incomplete
combustion of  chlorinated waste and in contact  with plastics
with  hot  surfaces.  TCDD  is  structurally  similar  to
polychlorinated aromatic hydrocarbons that act through the Ah
receptor  mechanism  [117,  118].  After  binding  with  the
cytosolic  receptor,  the  dioxin-receptor  complex  undergoes
dimerization  with  the  AHR  nuclear  translocator  protein.

Consequently,  this  complex  binds  to  dioxin  response
elements (DREs) on DNA, resulting in the induction of target
genes  such  as  CYP1A1  transcription  [119].  Apart  from
inducing  general  toxicity,  TCDD  is  well  known  to  cause
reproductive  toxicity  [90].  Following  maternal  exposure,  the
fetal pituitary gonadotrophin is the initial target of dioxins and
indirectly  impacts  testicular  steroidogenesis  [120].
Interestingly,  exposure  to  2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD)  in  infancy  has  been  shown  to  reduce  sperm
concentration  and  motility,  but  an  opposite  effect  has  been
reported  during  puberty  [121].  NIOSH  cohort  studies  have
shown that workers exposed to high concentrations of TCDD
result  in  decreased  testosterone  and increased  gonadotrophin
concentrations [122], suggesting that persistent organochlorine
pollutants negatively impact male reproductive health.

2.5. Perfluorinated Compounds (PFCs)

Perfluorinated compounds (PFCs), such as perfluorooctane
sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are
synthetic  chemical  substances  with  endocrine-disrupting
properties. These substances are widely used as lubricants and
surfactants in the industry and products like clothes, household
utensils, and food wrapping. PFC has long half-lives, ranging
from  3.5  to  7.3  years  [123],  and  has  been  shown  to
bioaccumulate in animal tissues [124]. Epidemiological studies
have  confirmed  the  effects  of  PFCs  exposure  on  testicular
function [125]. High PFOS and PFOA serum levels have been
shown  to  lower  sperm  concentration  and  also,  in  utero
exposure  of  men  to  PFOA  led  to  lower  sperm  numbers  and
higher  levels  of  LH  and  FSH.  PFCs  also  cause  Leydig  cell
hyperplasia  [126]  and  inhibits  spermatogenesis  in  rats
following  pubertal  exposure  [127].

2.6. Pesticides

Despite  its  benefits  in  controlling  agricultural  pests,
pesticide  persists  in  soils  and  water  bodies,  moves  up  to  the
trophic  chains,  and  affects  predators.  Several  reproductive
disorders have been connected to pesticide exposure, and more
than  one  hundred  of  them  have  been  listed  as  reproductive
toxicants. Pesticides may act as endocrine disruptors by various
mechanisms,  including  agonist  receptors  such  as  estrogen
receptor,  androgen  receptor,  estrogen-related  receptor,
pregnane X receptor, aryl-hydrocarbon receptor, and antagonist
receptor  by  interfering  with  the  synthesis,  transport,
metabolism, and excretion of natural hormones. The negative
effect of pesticides includes abnormalities in reproductive and
sexual development, gametogenesis, and early development of

the fetus. Dichlorodiphenyltrichloroethane (DDT), a persistent
organochlorine compound, was heavily used in the 1940s as a
broad-spectrum insecticide. It was banned in the 1970s due to
its estrogenic properties that have been shown to interfere with
pubertal development [128]. Similar to DDT, organochlorine
insecticides  such  as  endosulfan  and  lindane  have  altered  the
testicular  function  in  animal  models  [129  -  135].
Methoxychlor,  an  organochlorine  pesticide  introduced  as  an
alternative to DDT, was also banned in the United States due to
its  endocrine-disrupting properties.  It  was detected in human
adipose  tissue  and  has  impaired  male  reproduction  [96,  97,
136]. We have also shown that methoxychlor induces apoptosis
via  mitochondria-and  FasL  medicated  pathways  in  adult  rat
testis [137].

2.7. Phytoestrogens

Phytoestrogens  are  plant-derived  substances  possessing
endocrine-disrupting effects; due to their consumption of foods
and food products, it has been widely detected in human urine
and  blood  samples  across  several  countries  [138,  139].
Perinatal  exposure  of  rats  to  a  dietarily  relevant  mixture  of
phytoestrogens  has  been  shown  to  lower  sperm  quality  by
disrupting  the  hypothalamic-pituitary-gonadal  axis  and
hormonal  balance  [140].  A  higher  soy  food  intake  and
isoflavone  are  associated  with  lower  sperm  concentration
[141].  A  case-control  study  has  shown  higher  risks  of  male
infertility  following  increasing  exposure  to  phytoestrogens
such  as  daidzein,  genistein,  and  secoisolariciresinol  [142].
Genistein is another well-studied phytoestrogen that acts as a
tyrosine  kinase  inhibitor  [143]  and  an  antioxidant  [144].
Phytoestrogen exposure interferes with the androgen receptor
pathway and affects spermatogenesis's late steps [145]. In utero
and  neonatal  exposure  to  genistein  shows  delayed
spermatogenesis  and a  reduced number  of  epididymal  sperm
[146]. Since phytoestrogens are nonsteroidal compounds that
mimic  estrogen  and  act  via  estrogen  receptors,  once  bound,
they  not  only  act  as  estrogen  agonists  but  also  behave  as
selective  estrogen  receptor  modulators.  Exposure  to
phytoestrogens shows detrimental effects on male reproductive
health [104].

2.8. Cigarette Smoke and Endocrine Disruptors

Cigarette  smoke contains  numerous  endocrine-disrupting
chemicals  that  are  noxious  and  toxic  to  the  human  body.
Several studies have shown that exposure to nicotine decreases
sperm motility and count and increases the percentage of sperm
abnormality [147, 148] as well as decreases testosterone levels
in  rats  [149  -  151].  Constituents  in  cigarette  smoke  such  as
benzo  (a)  pyrene  and  cadmium  (Cd)  are  some  of  the  well-
known endocrine disruptors shown to alter male reproductive
health. Smoking habits significantly correlate with Cd level in
bodily fluids [152]. Further studies with an animal also confirm
that Cd causes reproductive toxicity, including reducing sperm
cell  numbers  and  sperm  motility  with  increases  in  DNA
fragmentation and sperm abnormality [153]. Cd also interferes
with steroidogenesis and may act as an estrogen-like factor by
binding  to  ER.  Benzo(a)pyrene  alters  sperm  functional
competence, evidenced by a reduced percentage of acrosome
halo  formation and sperm hyperactivation [154].  Prepubertal
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exposure  to  Benzo(a)pyrene  alters  the  male  reproductive
parameters  [155].  Even  though  the  relationship  between
tobacco smoking and semen quality has remained controversial
for  the  past  several  decades,  most  studies  have  reported
significant  changes  in  the  conventional  semen  parameters,
including semen volume, sperm density, motility, viability, and
normal morphology in the smoking population and suggesting
that smoking harms the male reproductive health [155, 156].

CONCLUSION

Exposure  to  endocrine-disrupting  chemicals  may  lead  to
adverse health  effects  at  different  stages  of  life-based on the
time and duration of exposure. The role of endocrine disruptors
as genotoxic/ epigenotoxic agents raises the issue of epigenome
altering that may influence the health of the actual and future
population.  The  influence  of  EDCs  on  reproduction,
development,  growth,  metabolic  rate,  and  gender  behavior
converts into present health hazards. Also, a change in dietary
intake is responsible for increasing consequences. Furthermore,
there is an increasing amount of research to describe that male
children are more likely to develop reproductive disorders in
response  to  neonatal  and  especially  prenatal  exposure;  such
exposures  are  even  more  likely  to  occur  now  with  the
increasing Exposure to EDCs from general consumers goods.
Reproductive  health  is  decreasing,  as  evidenced  by  the
increased  number  of  infertility  cases  that  correlate  with
environmental exposure to endocrine-disrupting chemicals and
lifestyle changes. Several in vivo studies for a few decades with
rats and mice strongly support  exposure to chemicals having
endocrine-disrupting chemicals adversely affecting both male
and  female  reproductive  systems  and  fertility.  However,  no
direct study correlates human exposure to endocrine disruptors
and  reproductive  health,  but  based  on  animal  studies,  these
chemicals can pose a significant threat to human reproduction.
Several  endocrine  disruptors  have  been  found  in  the  bodily
fluid of humans, suggesting that further studies are needed to
elucidate their reproductive and non-reproductive effects. Even
though, many known endocrine-disrupting chemicals present in
our environment, either alone or in combination, pose a great
threat  to  organisms.  Apart  from  known  environmental
contaminants  having  endocrine-disrupting  properties,  several
unknown chemicals are also present in our environment, and
their effect needs to be studied in the future to understand their
effect on reproductive and non-reproductive health.
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