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TRIM65 Promotes Osteogenic Differentiation by
Regulating the PI3K/AKT Signaling Pathway

Abstract:
Introduction: Tripartite motif  65 (TRIM65) is a crucial  regulator of cell  differentiation, proliferation, migration,
invasion, and carcinogenesis. However, its role in osteoporosis (OP) remains unclear. In this study, we evaluated the
role of TRIM65 in regulating osteoblast differentiation and calcification.

Materials and Methods: The role of TRIM65 during the osteogenic differentiation of MC3T3-E1 cells was evaluated.
The expression of COL1A1, RUNX2, and OCN was examined using western blot analysis and immunofluorescence
staining. The formation of calcium nodules was evaluated using alizarin red staining. Alkaline phosphatase activity
was evaluated using ALP staining.

Results:  TRIM65  expression  was  significantly  elevated  during  the  osteogenic  differentiation  of  bone  marrow
mesenchymal  stem  and  MC3T3-E1  cells.  We  demonstrated  that  TRIM65  overexpression  enhanced  osteogenic
differentiation and promoted bone formation in the MC3T3-E1 cells. Conversely, TRIM65 inhibited the osteogenic
differentiation and bone formation of  the MC3T3-E1 cells.  Mechanistically,  we found that TRIM65 knockdown in
MC3T3-E1 cells up-regulated the phosphorylated protein expression of PI3K and AKT, which was contrary to the
results of the TRIM65-overexpression group.

Conclusion:  Our  research  suggests  that  TRIM65  is  an  important  osteogenic  differentiation  and  bone  formation
regulator and offers a therapeutic application for OP.

Keywords:  Tripartite  motif  65,  Osteoporosis,  Osteoblast,  Osteogenic  differentiation,  Signaling  pathway,
Phosphorylated  protein.
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1. INTRODUCTION
Osteoporosis  (OP)  is  a  systemic  bone  disease

characterized by the destruction of bone microstructure,
decreased  bone  mass,  and  increased  susceptibility  to
fracture  [1-5].  The  prevalence  of  osteoporotic  fractures

globally  is  8.9  million  annually  [6-10].  More  than  200
million  people  have  been  globally  diagnosed  with  OP
[11-13].  Osteoporotic  fractures  are  a  growing  public
health concern, especially among postmenopausal elderly
women [14-17]. Therefore, finding an effective treatment
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strategy to diagnose and treat osteoporosis is important.
In  1994,  the  WHO  recommended  that  bone  mineral
content,  which  is  maintained  by  a  dynamic  balance
between  bone  resorption  and  formation,  is  the  main
standard for OP diagnosis [18]. Osteoblasts are the major
functional  cells  of  bone  formation,  responsible  for  the
synthesis,  secretion,  and  mineralization  of  bone  matrix
and  the  stages  of  differentiation.  Proliferation  and
mineralization  are  controlled  by  diverse  transcription
factors,  cytokines,  and  signaling  pathways  [19-21].
Impaired  osteoblast  differentiation,  proliferation,  and
mineralization  are  the  major  pathophysiological  mecha-
nisms  underlying  OP  [22,  23].  However,  the  underlying
mechanisms  remain  obscure.  Therefore,  further
elucidation  of  the  regulatory  mechanisms  of  osteoblast
differentiation  and  mineralization  is  required  for  under-
standing OP pathogenesis and offers new strategies for its
treatment.

Tripartite  motif  (TRIM)-containing  proteins  play
crucial  roles  in  regulating  critical  cellular  biological
processes,  including  differentiation,  proliferation,  apo-
ptosis,  autophagy,  signal  transduction,  innate  immunity,
and  tumorigenesis  [24-29].  TRIM21  is  implicated  in  the
regulation of differentiation in immune cells, senescence
and  proliferation  in  osteosarcoma  cells,  osteoblast
differentiation  of  osteosarcoma  cells,  and  osteogenic
differentiation of bone mesenchymal stem cells (BMSCs)
[30-36].  TRIM16  promotes  osteogenic  differentiation  of
human  periodontal  ligament  stem  cells  by  regulating
RUNX2  stability  [37].  TRIM38  is  a  key  factor  in  the
regulation  of  bone  remodeling  by  controlling  osteoblast
and osteoclast differentiation [38]. TRIM65 plays a role in
regulating  various  biological  processes,  such  as  cell
proliferation  and  migration  [39-42],  cell  growth  [43],
apoptosis [44, 45], autophagy [45, 46], and inflammation
[47-49]. Osteoblasts play a crucial role in OP development
and progression. However, whether TRIM65 participates
in  osteoblastogenesis  and  contributes  to  OP  remains
unclear.

In  our  study,  we  observed  that  TRIM65  expression
significantly  increased  during  the  osteogenic  differenti-
ation  of  BMSCs  and  a  mouse  preosteoblastic  cell  line
(MC3T3-E1  cells).  Moreover,  we  observed  that  TRIM65
overexpression  promoted  osteogenic  differentiation  of
MC3T3-E1  cells  compared  to  the  control  group.  In
contrast,  the  loss  of  TRIM65  inhibited  the  osteogenic
differentiation of BMSCs and MC3T3-E1 cells as compared
to the control group. Furthermore, the PI3K/AKT signaling
pathway was activated post-TRIM65 knockout during the
osteogenic differentiation of BMSCs and MC3T3-E1 cells.
These  findings  suggest  that  TRIM65  plays  a  role  in  OP
regulation by affecting osteogenic differentiation.

2. MATERIALS AND METHODS

2.1. Cell Culture and Differentiation
Primary  mouse  BMSC  extracts  and  cultures  were

prepared as previously described [50], and the study was
approved  by  the  Institutional  Ethical  Board  of  the
University of South China. Three six-week-old male mice

(C57BL/6J  mice)  were  sacrificed  by  cervical  dislocation
and  soaked  in  75%  alcohol  for  3–5  min.  The  four  limb
bones  were  aseptically  extracted  from  the  mice.  Bone
marrow  was  obtained  from  long  bones  of  mice  with  α
modified  Eagle  medium  (α-MEM;  AW-M011,  Abiowell,
China)  using  a  sterile  syringe  to  rinse  the  bone  marrow
cavity. The bone marrow fluid was centrifuged for 10 min
at 1500 rpm. The supernatant was removed. We added α-
MEM  complete  medium  (AW-MC023,  Abiowell,  China)
containing  10% fetal  bovine  serum (FBS)  and  500  U/mL
penicillin/streptomycin (P/S) and cultured at 37 °C and 5%
CO2 for 48–96 h. Two to three passages of BMSCs were
used for all experiments.

The  MC3T3-E1  cells  were  purchased  from  Abiowell
Biological Technology Co., Ltd. (AW-CNM401, China) and
cultured with α-MEM complete medium. For induction of
differentiation,  BMSCs  or  MC3T3‐E1  cells  were  seeded
into  a  6‐well  plate  at  a  density  of  5×105  cells/well.  On
reaching 80–90% confluence, the medium was discarded,
changed with osteogenic differentiation medium (OriCell,
MUXMT-90021),  and cultured at 37 °C with 5% CO2 for
14 days.  The culture  medium was replaced every  2  or  3
days.  Alizarin  red  S  (ARS),  alkaline  phosphatase  (ALP),
immunofluorescence staining, and western blotting were
conducted to examine osteoblastic differentiation.

2.2. Immunofluorescence Staining
The cells were seeded on coverslips in 48-well plates

and  induced  with  osteogenic  differentiation  medium  as
described  above.  The  cells  were  then  fixed  for  30  min,
permeabilized  with  0.3%  Triton  X‐100  for  20  min,  and
blocked with 10% FBS for 1 h. The cells were incubated
with  the  primary  antibodies  (TRIM65,  Biorbyt;  COL1A1,
Proteintech;  RUNX2,  Proteintech;  Osteocalcin,  Pro-
teintech) overnight at 4 °C and with secondary antibodies
(Alexa  Fluor® 488 or  594)  in  the  dark  for  1  h  at  37 °C,
followed  by  4′,6‐diamidino‐2‐phenylindole  (DAPI)  for  5
min. The cells were observed under a fluorescent inverted
microscope and photographed.

2.3.  Lentivirus  Transfection  and  Stable  Lines
Screening

The overexpressing TRIM65 lentivirus plasmid, mouse
TRIM65 gene-targeting siRNA, and their control plasmid
were purchased from Jikai Biological Company (Shanghai,
China). MC3T3‐E1 cells were infected with four plasmids
(TRIM65, EV, shTRIM65, and NC). After transfection for
72 h, the cells were treated with puromycin (1 μg/mL) for
7 days. Viable cells were used for subsequent experiments.
Infection  efficiency  was  observed  using  fluorescence
microscopy,  real-time  fluorescence  quantitative  poly-
merase  chain  reaction  (qRT-PCR),  and  western  blotting.

2.4. Western Blotting
The  total  protein  was  extracted  by  using  RIPA  lysis

buffer (CWBIO, CW2333S, China) containing 1% phenyl-
methylsulfonyl  fluoride  (PMSF;  Beyotime,  ST507,  China)
and  1%  phosphatase  inhibitors  (CWBIO;  CW2383S,
China). Protein concentration was determined by using a
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bicinchoninic  acid  protein  assay  kit  (CWBIO,  CW0014S,
China).  Protein  samples  were  diluted  with  5×SDS-PAGE
loading buffer (CWBIO, CW0028S, China) at  95 °C for 8
min.  Then,  50μg  proteins  were  separated  using  sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE).  The  proteins  were  then  transferred  to  poly-
vinylidene  difluoride  membranes  (PVDF;  Millipore,
IPVH00010, MA). They were blocked with 5% nonfat milk
for 2–4 h at room temperature and incubated with primary
antibodies  against  TRIM65  (1:1000;  Biorbyt),  COL1A1
(1:500; Proteintech),  RUNX2 (1:1000; Proteintech),  OCN
(1:2000; Proteintech), phospho-PI3K (1:500; Proteintech),
PI3K  (1:1,000;  Proteintech),  phospho-AKT  (1:500;
Proteintech),  AKT  (1:500;  Proteintech),  and  GAPDH
(1:10000; Proteintech) at 4 °C overnight. The membranes
were  incubated  with  the  corresponding  secondary
antibodies  (1:5000;  Proteintech)  on  a  shaker  for  2  h  at
room temperature. Immunodetection was conducted with
an Omni-ECL™ ultra-sensitive chemiluminescence test kit
(Epzyme,  SQ201,  China)  and  Image  Quant  LAS  4000.
Protein  bands  were  quantitatively  analyzed  using  the
ImageJ  software.

2.5. q-PCR
The total RNA was extracted using the TRIzol Reagent

(CWBIO, CW0580S, China). cDNA was synthesized using
the SuperStar miRNA first-strand cDNA synthesis kit (by
tailing A) (CWBIO, CW2151M, China). PCR was performed
with  a  SYBR  PCR  kit  (CWBIO,  CW3360M,  China)  on  a
StepOne Real‐time PCR System (ABI Company, USA). We
used  reduced  glyceraldehyde-phosphate  dehydrogenase
(GAPDH)  as  the  endogenous  control.  The  2−ΔΔCt  was
used to evaluate the relative mRNA expression levels. The
primers  sequences  of  TRIM65  and  GAPDH  are  listed  as
follows  [48]:  TRIM65-Forward:  5′-AAGAGAAGAGCCTCC-
CCAAG-3′,  TRIM65-Reverse:  5′-GGTCTCTGGGTCAAA-
GGTCA-3′;  GAPDH-Forward:  5′-ACCCAGAAGACTGTGG-
ATGG-3′,  GAPDH-Reverse:  5′-ACACATTGGGGGTAGG-
AACA-3′.
2.6. ALP Staining

Cells were seeded into 12-well plates at a density of 5
×  104  cells/well  and  induced  with  osteogenic  differenti-
ation  medium  as  described  earlier.  An  ALP  staining
reagent (Solarbio,  G1480, China) was used to determine
ALP  activity  according  to  the  instructions  of  the
manufacturer.  Stained  images  were  observed  and
captured  in  five  random  fields  using  a  phase-contrast
microscope  (Nikon,  Japan).
2.7. ARS Staining

The cells induced in 12-well plates were cleaned and
fixed  for  20–30  min.  Then,  the  cells  were  stained  with
0.1% alizarin red staining solution (OriCell,  ALIR-10001)
for 20 min. After cleaning thrice, calcium nodule formation
was observed using a phase-contrast microscope (Nikon,
Tokyo, Japan). The images were captured in five random
fields.
2.8. RNA-sequencing Analysis

Transcriptome  sequencing  was  conducted  by  Origin-
Gene  Bio-Pharm  Technology  Co.,  Ltd.  The  experimental

process  was  as  follows:  MC3T3-E1  cells  from  shNC  and
shTRIM65  groups  were  collected  using  TRIzol  Reagent
(CWBIO, CW0580S, China). After extracting the total RNA
from  the  sample,  rRNA  was  cleared  using  an  rRNA
removal  kit,  mRNA  was  enriched,  and  double-stranded
cDNA  was  synthesized.  The  double-ended  cDNA  was
repaired,  a  splice  was  added,  and  cDNA  libraries  were
constructed by PCR amplification. RNA-seq was conducted
using an Illumina high-throughput sequencing platform.

2.9. Statistical Analysis
All  results  are  represented  as  mean  ±  standard

deviation (x ± SD). The students' t-test was used to make
pairwise  comparisons.  One-way  analysis  of  variance
(ANOVA) was used for comparisons among more than two
groups.  All  experiments  were  conducted  thrice  indepen-
dently. All data analyses were conducted using the ImageJ
and GraphPad Prism 7.0 software.  A p-value < 0.05 was
considered to be statistically significant.

3. RESULTS

3.1. TRIM65 Expression Increased during Osteogenic
Differentiation

To  investigate  whether  TRIM65  is  involved  in
osteoblast  differentiation,  western  blotting  and  immuno-
fluorescence  staining  were  conducted  to  detect  TRIM65
expression  after  the  cells'  induction  with  osteogenic
differentiation medium on days 0, 7, and 14 (Fig. 1A-1G).
We  found  that  TRIM65  predominantly  existed  in  the
cytoplasm  of  MC3T3‐E1  cells  and  BMSCs.  The  results
demonstrated  that  TRIM65  levels  were  significantly  up-
regulated in the induced cells (Fig. 1H–1M). This suggests
that TRIM65 participates in the osteogenic differentiation
of BMSCs and MC3T3-E1 cells.

3.2. Effect of TRIM65 Overexpression on Osteogenic
Differentiation

To further explore the effect of TRIM65 on osteogenic
differentiation, we constructed an overexpressing plasmid
of TRIM65 (LV-TRIM65) and its control (LV-empty vector,
EV)  vector  using  a  lentivirus.  MC3T3-E1  cells  were
infected with an overexpressing TRIM65 lentiviral plasmid
(LV-TRIM65) and its control (EV). At 72 h post-infection,
puromycin  was  used  to  screen  for  positive  cells.
Transfection  efficiency  was  assessed  by  fluorescence
microscopy  and  western  blotting.  As  depicted  in  Fig.
(2A–2C),  TRIM65  expression  increased  3.8  folds  in  LV-
TRIM65-transfected MC3T3-E1 cells compared to that in
EV cells. Furthermore, we evaluated the effect of TRIM65
on  the  osteogenic  differentiation  and  mineralization  of
MC3T3-E1  cells  by  measuring  the  protein  expression  of
the osteogenesis-related genes COL1A1, RUNX2, and OCN
using western blotting and immunofluorescence staining.
The  results  demonstrated  that  TRIM65  overexpression
significantly  increased  COL1A1,  RUNX2,  and  OCN  (Fig.
2D-2F).  The  effect  of  TRIM65  on  ALP  activity,  another
important  phenotypic  marker  of  differentiation,  was
determined  by  ALP  staining.  The  results  demonstrated
that TRIM65 significantly increased ALP activity compared
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Fig. (1). TRIM65 expression increased during osteoblast differentiation of BMSCs and MC3T3-E1 cells. (A) The expression of
COL1A1, RUNX2, and OCN was detected by Immunofluorescence (IF) staining during the osteoblast differentiation of BMSCs on days 0,
7, and 14. (B) MC3T3-E1 cells were cultured in an osteogenic medium on days 0, 7, and 14. IF staining was used to detect COL1A1,
RUNX2, and OCN expression. (C) ARS was used to detect the calcium nodule formation during the osteoblast differentiation of BMSCs
and MC3T3-E1 cells on days 0, 7, and 14. (D) ALP staining was used to detect ALP activity during the osteoblast differentiation of BMSCs
and  MC3T3-E1  cells  on  days  0,  7,  and  14.  (E)  Western  blotting  and  quantitative  analysis  (F)  were  used  to  detect  the  expression  of
COL1A1, RUNX2, and OCN during the osteoblast differentiation of MC3T3-E1 cells on days 0, 7, and 14. (G) q-PCR was used to detect the
expression of COL1A1, RUNX2, and OCN during the osteoblast differentiation of BMSCs on days 0, 7, and 14. (H) TRIM65 expression was
detected during the osteoblast differentiation of BMSCs on days 0, 7, and 14 using an IF staining assay. (I) MC3T3-E1 cells were cultured
in an osteogenic medium for 0, 7, and 14 days, and IF staining was used to detect TRIM65 expression during the osteoblast differentiation
of BMSCs on days 0, 7, and 14. (J) Western blotting and quantitative analysis (K) were used to detect TRIM65 expression during the
osteoblast differentiation of BMSCs cells on days 0, 7, and 14. (L) Western blotting and quantitative analysis (M) were used to detect
TRIM65 expression during the osteoblast differentiation of MC3T3-E1 cells on days 0, 7, and 14. Error bars are presented as the mean ±
SD, and comparisons were performed using one‐way ANOVA. **P < 0.01 vs. 0 days; &&P < 0.01 vs. 7 days, n=3 in each group.
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to that in the EV group (Fig. 2G). Additionally, the effect
of  TRIM65 on calcified bone nodules was determined by
ARS staining 14 days after the osteogenic differentiation
of MC3T3-E1 cells. As depicted in Fig. (2H), more calcium

bone  nodules  were  found  in  TRIM65-overexpressed
MC3T3-E1 cells than in the EV group. This indicates that
TRIM65  overexpression  promotes  osteogenic  differenti-
ation  of  MC3T3-E1  cells.

Fig.  (2).  Effect  of  TRIM65  on  the  osteoblast  differentiation  of  MC3T3-E1  cells.  (A)  MC3T3-E1  cells  were  infected  with
overexpressed TRIM65 lentivirus plasmid (LV-TRIM65) and its control (EV). The fluorescence intensities were observed using an inverted
fluorescence microscope. (B) Western blotting and quantitative analysis (C) were used to detect the expression of TRIM65 in MC3T3-E1
cells after the cells were transfected with LV-TRIM65. (D)  MC3T3-E1 cells overexpressing with TRIM65 were cultured in osteogenic
medium for 14 days, and immunofluorescence staining was used to detect COL1A1, RUNX2, and OCN expression. (E) Western blotting
and quantitative analysis (F) were used to detect the expression of COL1A1, RUNX2, and OCN during the osteoblast differentiation of
TRIM65-overexpressed  MC3T3-E1  cells  at  14  days.  (G)  ARS  was  used  to  detect  the  calcium nodule  formation  during  the  osteoblast
differentiation of TRIM65-overexpressed MC3T3-E1 cells at 14 days. (H) ALP staining was used to detect the ALP activity during the
osteoblast  differentiation  of  TRIM65-overexpressed  MC3T3-E1  cells  at  14  days.  Error  bars  are  presented  as  the  mean  ±  SD,  and
comparisons were performed using one‐way ANOVA. **P < 0.01 vs. EV group, n=3 in each group.
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3.3.  Effect  of  TRIM65  Knockdown  on  Osteogenic
Differentiation

To  explore  the  role  of  TRIM65  in  osteogenic
differentiation,  we  inhibited  TRIM65  expression  by
transfecting  with  shRNA-TRIM65  lentivirus  plasmid
(shTRIM65) and its control (shNC). Transfection efficiency
was  determined  by  western  blotting.  The  results
demonstrated that the protein expression of TRIM65 was
significantly  reduced  (Fig.  3A  and  3B).  In  addition,  we
evaluated  the  effect  of  TRIM65  knockdown  on  the

osteogenic differentiation and mineralization of MC3T3-E1
cells.  We  measured  the  protein  expression  of  COL1A1,
RUNX2, and OCN with immunofluorescence staining and
western  blotting.  The  results  revealed  that  TRIM65
deficiency  significantly  reduced  COL1A1,  RUNX2,  and
OCN expression (Fig. 2C-2E). Moreover, the ALP activity
and  calcified  bone  nodules  were  significantly  decreased
after  TRIM65 was knocked down (Fig.  2F  and 2G).  This
suggests  that  TRIM65  deletion  inhibits  osteogenic
differentiation  of  MC3T3-E1  cells.

Fig. (3). Effect of TRIM65 knockdown on osteoblast differentiation of MC3T3-E1 cells. (A) MC3T3-E1 cells were infected with
shRNA-TRIM65 lentivirus  plasmid  (shTRIM65)  and  its  control  (shNC).  TRIM65 protein  expression  was  determined by  using  western
blotting analysis. (B) The gray value of Figure A is quantitatively analyzed by using Image J and the GraphPad Prism 7.0 software. The
error bar was presented as the mean ± SD, and comparisons were performed using student t-test. **P < 0.01 vs. shNC, n=3. (C) MC3T3-
E1 cells were transfected with shTRIM65 and cultured in osteogenic medium for 14 days, and immunofluorescence staining was used to
detect COL1A1, RUNX2, and OCN expression. (D) Western blotting and quantitative analysis (E) were used to detect the expression of
COL1A1, RUNX2, and OCN during the osteoblast differentiation of TRIM65-knockdown MC3T3-E1 cells at 14 days. (F) ARS was used to
detect the calcium nodule formation during the osteoblast differentiation of TRIM65-knockdown MC3T3-E1 cells at 14 days. (G) ALP
staining was used to detect the ALP activity during the osteoblast differentiation of TRIM65-knockdown MC3T3-E1 cells at 14 days. Error
bars are presented as the mean ± SD, and comparisons were performed using one‐way ANOVA. **P < 0.01 vs. OD, n=3 in each group,
OD: osteogenic differentiation.
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Fig. (4). Depletion of TRIM65 inhibits osteogenic differentiation by regulation of PI3K/AKT pathway (A) Schematic diagram
showing RNA-seq analysis was performed on shNC and shTRIM65 groups for identification of DEGs in MC3T3-E1 cells. (B) The volcano
map shows DEGs in shNC and shTRIM65 transfected MC3T3-E1 cells. (C) GO enrichment analysis of the top 15 up-regulated DEPs in
shNC and shTRIM65 transfected MC3T3-E1 cells.  (D)  GO enrichment  analysis  of  the  top 10 down-regulated pathways  of  osteogenic
differentiation in shNC and shTRIM65 transfected MC3T3-E1 cells. (E) KEGG enrichment analysis of the top 15 up-regulated DEPs in
shNC and shTRIM65 transfected MC3T3-E1 cells.  (F)  KEGG analysis of  the top 10 down-regulated pathways in shNC and shTRIM65
transfected MC3T3-E1 cells. (G) Western blotting and quantitative analysis (H) were used to detect the ratio of phosphorylated proteins
and total protein expression of PI3K and AKT during the osteoblast differentiation of TRIM65-overexpressed MC3T3-E1 cells at 14 days.
(I) Western blotting and quantitative analysis (J) were used to detect the ratio of phosphorylated proteins and total protein expression of
PI3K and AKT during the osteoblast differentiation of TRIM65-knockdown MC3T3-E1 cells at 14 days. Error bars are presented as the
mean ± SD, and comparisons were performed using two‐way ANOVA. **P < 0.01 vs. OD, n=3, OD:osteogenic differentiation.

3.4.  Involvement  of  PI3K/AKT  Pathway  in  TRIM65-
regulated Osteogenic Differentiation

To  reveal  the  mechanisms  underlying  the  role  of
TRIM65  in  the  osteogenic  differentiation  of  MC3T3-E1
cells,  RNA-seq  was  performed  on  shNC  and  shTRIM65
groups (Fig. 4A). A total of 25,935 genes were identified in
the MC3T3-E1 cells transfected with shTRIM65 compared
to  the  shNC  group.  Among  the  identified  genes,  1,458
were  up-regulated,  and  1,956  were  down-regulated,  as

depicted in the volcano map (Fig. 4B). To further clarify
the  effect  of  shTRIM65  on  the  biological  functions  of
MC3T3-E1  cells,  we  selected  the  top  15  enriched  Gene
Ontology  (GO)  terms  for  biological  processes  (BP)  to
facilitate  the  analysis  based  on  the  up-regulated
differentially expressed genes (DEGs). The data depicted
that  up-regulated  DEGs  were  predominantly  involved  in
blood  vessel  and  vasculature  development,  ossification,
gene expression, metabolic processes, cell migration and
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Fig. (5). TRIM65 promotes osteogenic differentiation of MC3T3-E1 cells by modulating the PI3K/AKT pathway. (A) TRIM65-
overexpressed MC3T3-E1 cells were treated with 740Y-P. The expressions of phosphorylated PI3K and AKT proteins were detected by
using  western  blotting  analysis.  (B)  Quantitative  analysis  was  used  to  detect  the  ratio  of  phosphorylated  proteins  and  total  protein
expression of PI3K and AKT in TRIM65-overexpressed MC3T3-E1 cells after treatment with 740Y-P. Error bars are presented as the mean
± SD, and comparisons were performed using two‐way ANOVA. **P < 0.01 vs. OD, &&P < 0.01 vs. OD+TRIM65, n=3 in each group. (C)
Western blotting and (D) quantitative analysis were used to detect COL1A1, RUNX2, and OCN expression. Error bars are presented as the
mean ± SD, and comparisons were performed using two‐way ANOVA. **P < 0.01 vs. OD, &&P < 0.01 vs. OD+TRIM65, n=3 in each group.
(E) ARS was used to detect the calcium nodule formation during the osteoblast differentiation of TRIM65-overexpressed MC3T3-E1 cells
after treatment with 740Y-P. Scale bar=100μm. (F) ALP staining was used to detect the ALP activity during the osteoblast differentiation
of TRIM65-overexpressed MC3T3-E1 cells after treatment with 740Y-P. Scale bar=100μm. OD: osteogenic differentiation.
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proliferation,  cell  movement,  and  motility  (Fig.  4C).  To
further screen the key genes involved in OB differentiation
from  these  DEGs,  we  selected  the  top  10  enriched  GO
terms  of  BP  to  facilitate  the  analysis  according  to  the
down-regulated DEGs. This demonstrated that the major
down-regulated  differential  genes  post  TRIM65  knock-
down  in  the  MC3T3-E1  cells  were  involved  in  the
regulation of DNA replication, cell proliferation, osteoblast
differentiation, ossification and bone maturation, and bone
calcification (Fig.  4D).  Kyoto Encyclopedia of Genes and
Genomes Pathway (KEGG) analysis revealed that the up-
regulated  DEGs were  involved  in  the  PI3K/AKT pathway
(Fig.  4E).  The  top  10  down-regulated  DEGs  were
predominantly  enriched  in  the  regulation  of  DNA
replication  and  metabolic  pathways  (Fig.  4F).  To  verify
whether  the  PI3K/AKT  pathway  is  involved  in  TRIM65-
regulated  osteogenic  differentiation,  we  examined  the
expression  of  phosphorylated  proteins  and  total  protein
expression of PI3K and AKT in TRIM65-overexpressed or
TRIM65-knockdown  MC3T3-E1  cells  using  western
blotting analysis. The expression of phosphorylated PI3K
and  AKT  was  significantly  down-regulated  by  TRIM65
overexpression in the MC3T3-E1 cells (Fig. 4G and 4H). In
contrast,  p-PI3K  and  p-AKT  levels  were  significantly  up-
regulated in the TRIM65-knockdown cells (Fig. 4I and 4J).
This  was  consistent  with  the  results  of  KEGG  analysis,
revealing  that  the  PI3K/AKT  pathway  is  associated  with
TRIM65-regulated osteogenic differentiation.

3.5. TRIM65 Promotes Osteogenic Differentiation of
MC3T3-E1  Cells  by  Modulating  the  PI3K/AKT
Pathway

To  explore  whether  TRIM65  promotes  osteogenic
differentiation  of  MC3T3-E1  cells  by  regulating  the
PI3K/AKT pathway, we examined the protein expression of
COL1A1, RUNX2, OCN, and the ALP activity, and calcified
bone  nodules  in  TRIM65-overexpressed  MC3T3-E1  cells
after  treatment  with  740Y-P,  a  PI3K/AKT  agonist.  We
found  that  the  expressions  of  phosphorylated  PI3K  and
AKT  proteins  were  up-regulated  (Fig.  5A  and  5B),  and
COL1A1,  RUNX2,  and  OCN  levels  were  down-regulated
(Fig.  5C  and  5D).  Furthermore,  the  ALP  activity  and
calcified  bone  nodules  were  inhibited  (Fig.  5E  and  5F)
after  TRIM65-overexpressed  MC3T3-E1  cells  treatment
with  740Y-P.  These  results  revealed  that  TRIM65
promotes osteogenic differentiation of MC3T3-E1 cells by
regulating the PI3K/AKT pathway.

4. DISCUSSION
OP is  a  widespread chronic  disease  characterized by

reduced bone mass or low bone density, which can reduce
bone strength and lead to fractures [51-55]. Osteoporotic
fractures are gaining increasing attention because of their
high incidence rates and lack of satisfactory treatment for
OP. Osteoblasts, which are the sole bone-forming cells, are
responsible  for  the  formation  of  bones  and  the
maintenance  of  bone  mass  [56-60].  Osteoblast
differentiation  is  crucial  for  maintaining  bone  strength.
Herein,  we  aimed  to  identify  a  novel  target  for  OP
treatment  that  regulates  osteoblast  differentiation.

An increasing number of studies have emphasized the
importance  of  TRIM65  in  tumorigenesis  [61],  inflam-
matory  response  [62,  63],  and  cell  proliferation  and
migration [39]. Osteogenic differentiation is a key process
in  bone formation [60].  Dysfunction of  osteoblastic  bone
formation  is  associated  with  the  occurrence  and
progression  of  OP.  In  this  study,  we  found  that  TRIM65
was  up-regulated  during  osteogenic  differentiation  of
BMSCs and MC3T3-E1 cells.  We discovered for  the  first
time  that  TRIM65  overexpression  promotes  osteoblastic
bone formation by elevating the differentiation of MC3T3-
E1  cells  and  increasing  the  formation  of  osteoblasts.  In
contrast,  TRIM65  depletion  inhibited  osteoblast  bone
formation by preventing osteoblast osteogenic differenti-
ation and attenuating ALP generation. Therefore, TRIM65
may play a crucial role in osteogenic differentiation.

PI3K/AKT  signaling  plays  a  crucial  role  in  cell
proliferation and differentiation [64-67].  This  pathway is
crucial for osteoblast differentiation, bone formation, and
bone regeneration [68-70]. Our cooperative team, Zhou et
al., previously reported that TRIM65 plays a critical role in
PI3K/AKT/mTOR signaling during vascular smooth muscle
cells  (VSMCs)  phenotypic  transformation  and  athero-
genesis  [39].  Herein,  bioinformatics  analysis  of  RNA
sequences  in  the  shTRIM65-  and  shNC-transfected
MC3T3-E1  cells  revealed  that  TRIM65  majorly  affected
PI3K/AKT signaling. Moreover, our results indicated that
TRIM65  overexpression  in  the  MC3T3-E1  cells  strongly
inhibited the expression of phosphorylated PI3K and AKT.
Conversely,  TRIM65  knockdown  in  the  MC3T3-E1  cells
significantly  increased  the  expression  ratios  of  p-
PI3K/PI3K and p-AKT/AKT. Therefore, TRIM65-modulated
osteoblast differentiation was accomplished by regulating
the  PI3K/AKT  pathway.  However,  this  study  was
conducted  in  vitro.  Thus,  we  will  use  TRIM65  knockout
animal models to further investigate the effects of TRIM65
on osteoblast differentiation and OP.

CONCLUSION
Our experiments  revealed that  TRIM65 was elevated

during  the  osteoblast  differentiation  of  BMSCs  and
MC3T3-E1  cells.  We  further  demonstrated  that  TRIM65
overexpression  increased  MC3T3-E1  cell  differentiation,
promoted osteogenic bone formation, and enhanced ALP
levels,  whereas  TRIM65  deletion  exhibited  the  opposite
results. Moreover, the PI3K/AKT pathway was considered
and determined to be triggered after TRIM65 deletion in
MC3T3-E1  cells.  This  study  provides  a  new  intervention
target for TRIM65 for the prevention and treatment of OP.
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OP = Osteoporosis
BMSCs = Bone Mesenchymal Stem Cells
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ARS = Alizarin red S
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Gel Electrophoresis
GO = Gene Ontology
BP = Biological Processes
DEGs = Differentially Expressed Genes
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