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Abstract: For a variety of medical applications, detailed knowledge on the statistical distribution of morphometric 
characteristics among specific patient groups is required. We present a novel approach for performing automated 
morphometric measurements on the surface of anatomical bone samples obtained from CT segmentation. The system 
developed supports various types of measurements (distances, angles, radii) on several kinds of features (points, lines, 
planes or circles), which are performed automatically for every bone sample in a given data set. The desired features can 
be specified by the user in two ways, either by marking them on a standardized template that is mapped to all samples via 
a correspondence mapping, or by hierarchically building new features from existing features. 

The system was implemented and tested on a database containing about 1200 segmented femur. The quality of the 
automated matching was assessed through a study comparing the performance of the system with results obtained from 
manual labeling by medical experts. It was found that the deviation between the two methods was generally less than 
2mm. 
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1. INTRODUCTION 

 With increase in storage capacity and processing power 
of computer systems, the gathering of anatomical data (CT, 
MRI, etc.) into centralized databases has found widespread 
adoption in commercial and academic settings. Many 
medical applications require a statistical analysis of the data 
based on patient-specific attributes (e.g. age, sex, ethnic 
group). 
 One exemplary area in which such findings are of high 
importance is implant design, where the shape and size of 
the implant have to be adapted to the anatomy of the target 
patient group as well as possible. Other examples include the 
tracking of epidemiological developments (e.g. increase in 
body height over time with respect to sex, ethnicity, etc.), 
tabulation of anatomical reference data (e.g. for use in 
planning deformity corrections), or application of various 
data mining techniques (e.g. predicting the risk of delivery 
complications based on specific anatomical features of the 
maternal pelvis). 
 The characteristics dealt with in this paper are quantities 
(distances, angles, radii) measured on anatomical features,  
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such as “radius of the femoral head” or “angle between 
femoral shaft and neck axis”, etc. Traditionally, these kinds 
of measurements could only be obtained with high amounts 
of user interaction, being performed on MRI images [1], 
ultrasound imaging [2, 3] or through a variety of other means 
[4, 5]. However, the manual approach is very time 
consuming and has other drawbacks such as low 
reproducibility due to interandintrasubject variance. MRI or 
CT-based measurements are often performed on single 
slices, and thus disregard the 3D nature of the problem. Also, 
to be statistically meaningful, the desired measurements have 
to be performed on a sufficiently large number of specimens, 
which is very cumbersome when done manually. Ideally it 
should be easy to quickly change the input parameters of the 
evaluation (e.g. redefine the points between which a 
measurement is made). 
 These requirements call for an automated procedure to 
perform the measurements. Such a procedure would accept a 
specification of the quantity to be measured, and measure 
this quantity on every sample of an input data set. These 
measurements have to be done for every sample on its own 
rather than performing measurements on a samples’ mean 
because the arithmetic mean differs from the geometrical 
mean which is shown in Fig. (1). Once the results have been 
computed, they can be further analyzed with respect to their 
statistical properties. Also, if patient metadata (e.g. patient 
age, sex, height, weight, ethnic group, etc.) is stored along 
with the actual anatomical data, the evaluation can be 
constrained to a specific subset of the input. Thus, highly 
relevant results can be obtained (e.g. “CCD angle of 
Caucasian women older than 50 years”). 
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 The main obstacle for the automation of this process lies 
in determining corresponding anatomical structures or 
landmarks on different samples. To produce meaningful 
results, the features involved in the measurements must be 
consistently identified on all members of the input set, a task 
that is complicated by the high interindividual variance of 
anatomical structures. 
 This paper presents an approach which addresses this 
problem. The proposed system identifies different kinds of 
features (explicitly defined landmarks as well as user-
supplied point features) on segmented bone samples stored 
in a database, and performs measurements on these. The 
system works fully autonomously both during data 
preprocessing which has to be done once for every sample in 
the database, as well as during the actual evaluation, in 
which measurements specified by the user are performed on 
the bone samples. The system was implemented on a 
database containing several thousand femur samples. The 
quality of the anatomical registration was assessed through a 
study comparing point correspondences found by the 
automated system with points manually marked by medical 
experts. 

2. BACKGROUND 

 Recently, a lot of research has gone into the generation of 
statistical shape models of bones which capture the statistical 
variance of a set of shapes [6]. Let a shape with n	
  vertices be 
represented as a 3n	
  element vector x	
   =	
   (x1,y1,z1,...,xn,yn,zn)T, 
and let {x1,...,xm}	
  be a set of sample shapes which are affinely 
aligned (i.e. aligned with respect to rotation, translation and 
scaling), and whose vertices correspond (i.e. whose element 
vectors represent ordered sets of corresponding points). 
Then, each of the sample shapes can be expressed as 
𝒙𝒊 =   𝒙 +𝚽𝐛𝒊  
in which 𝑥 = !

!
𝑥!  is the mean shape, Φ	
   a matrix of 

eigenvectors of the covariance matrix of the data, and bi	
  the 
weight vector of the i-th shape. 
 These methods have a wide variety of applications, 
including modeling of bone shape for segmentation purposes 
[7], surgical planning [8] or even inter-species comparisons 
of long bones [9]. However, they model the variance of a 
shape “as a whole” and thus are not well suited for 
determining the statistical properties of morphometric 
quantities (e.g. “femur CCD angle”, “femur head radius”). 
The main reason is that the modes identified by the principal 
component analysis do not directly correspond to specific 
quantities, i.e. there is no eigenmode that uniquely controls 
the CCD angle or other types of quantities. 
 Also, it should be noted that the calculation of a mean 
shape alone is not sufficient for obtaining information about 
the distribution of a quantity. Apart from the fact that it does 
not provide any way for determining characteristics like 
standard deviation, median, etc., a quantity measured on the 
mean shape is not in general identical to the mean of the 
quantities measured on the samples (see Fig. 1 for an 
illustration of the problem). 
 The main obstacle in the generation of statistical shape 
models is the problem of determining corresponding point 
sets across all samples. Although the system proposed in this 

paper does not use a statistical shape model, it still requires a 
dense correspondence mapping for the samples. A large 
number of approaches exist for the automated determination 
of the mapping transformation, see [10-12]. One way to 
obtain dense mappings is to regard the correspondence 
finding problem as the registration task in which a template 
mesh is deformed until its surface matches that of a sample 
[13]. A widely used method to describe 3D deformations 
uses cubic B-Spline interpolation inside a control-point 
lattice [14] which provides smooth deformations. 

 
Fig. (1). Given are two “shapes” (A1,B1)	
   and (A2,B2), and their 
arithmetic mean 𝐴,𝐵 = !

!
𝐴! ,𝐵!  with B1	
  =	
  B2	
  =	
  B	
  =	
  B. (a) The 

quantity to be measured is the angle α	
  formed with the horizontal 
axis, with α1	
  =	
   0◦ and α2	
  =	
   90◦. The correct mean angle, 𝛼=	
   45◦	
  
(blue) differs from the angle measured on the mean (red). (b) The 
quantity to be measured is the distance d(A,B)	
   between A	
   and B. 
The correct mean distance 𝑑=	
   d1	
   =	
   d2	
   differs from the distance 
measured on the mean (red), with 𝑑 = 2  𝑑 𝐴,𝐵 . 

3. SYSTEM DESCRIPTION 

 The system performs measurements on segmented bone 
surfaces represented by a triangular mesh. This kind of 
surface representation can be generated from CT volume 
images through a variety of methods outside the scope of this 
paper [15, 16]. For the rest of this paper, we assume the 
availability of segmented surfaces, annotated with patient 
metadata. 
 The proposed system can measure quantities like lengths, 
angles and diameters. All measurements are based on 
features which can be points, lines, planes or circles. For 
example, an evaluation could measure the distance of a point 
from a line, or the angle between a line and a plane. During 
an evaluation the features involved are identified on every 
input sample, and the desired quantity is measured and 
recorded. 
 Two different kinds of features exist: correspondence 
features and derived features. 
• Correspondence Features are features that are 

determined through correspondence mapping. 
Correspondence features are always “point” features 
although they can be used as building blocks for more 
complex types (see derived features). The user can 
define correspondence features by marking points on 
a template shape. During the evaluation, these 
features are mapped to their corresponding location 
on every sample. 
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• Derived Features are features that are constructed 
based on existing features (e.g. a plane (C1,C2,C3)	
  
defined by three correspondence points). They can be 
built hierarchically, i.e. derived features may serve as 
input to ”higher-level” derived features. Thus, 
complex geometric constructions can be specified 
(e.g. construct a line from the intersection of two 
planes, etc.). 

3.1. Correspondence Features 

 Correspondences are found by having the user mark 
points on a template shape and then mapping these points to 
the samples during an evaluation. Fig. (2) displays the 
mapping result of two template points. Correspondence 
features are always points, but in combination with derived 
features the user can perform arbitrary measurements 
between corresponding parts of anatomy over the entire 
range of input samples. 
 The mapping transformation from the template to the 
sample is precomputed for every specimen in the database. 
Once computed, it can be evaluated quickly at arbitrary 
points on the surface of the template. It yields a continuous, 
dense mapping. 
 The transformation here denoted as the function map(), 
maps a point xT	
  	
  	
  on the template surface to the corresponding 
point on the sample xS. It uses for this mapping 3 more 
functions, namely affine(), deform()	
   and surf()	
  which are 
applied successively in the listed order. In detail: 
• affine()	
   is an affine transformation that aligns the 

template and the sample with respect to position, 
orientation and scaling, 

• deform()	
   is a non-rigid deformation mapping that 
deforms the template surface until it coincides with 
the sample, 

• surf()	
  maps a point to the closest surface point of the 
sample (which is necessary only because deform()	
  is 
not fine-grained enough to capture small irregularities 
on the segmented surface). 

 
Fig. (2). Correspondence points, marked by the user on the template 
(left, blue) and mapped to a set of samples). 

 The function map()	
  can mathematically be written as the 
composition of these three constituent functions: 
xS= map(xT) = surf ◦deform ◦affine(xT) (1) 
 The affine transformation consists of scaling, rotation 
and translation. It is used to equilize the different coordinate 
systems of the template and the sample shape. The scaling is 
found through Procrustes analysis and necessary to 
compensate the different sizes of the samples compared to 
the template. The translational and rotational parts are 
obtained through a standard Iterative Closest Point (ICP) 

procedure, which is initialized with a transformation found 
through an analysis of the previously calculated anatomical 
features. For example, two femora are registered by aligning 
their shaft axes and coronal planes, and translating them until 
their centroids overlap. A similar procedure can be used for 
other kinds of bones. 
 The non-rigid deformation was implemented following 
the approach described in [17]. The template shape is 
embedded into a 3D deformation lattice, which is a regular 
grid whose vertices are control points that can be displaced, 
thereby controlling the deformation. The displacement of 
points inside the grid is interpolated using cubic B-splines, 
thus guaranteeing a continuous and smooth deformation of 
the entire shape. The mapping transformation is encoded in 
the displacement vectors of the grid vertices. The optimal 
transformation is found via an optimization process by 
minimizing the distances between the template and a sample 
shape. The minimization is calculated using the following 
energy term: 

𝐸!"#" 𝛿𝒑 = Φ! 𝒙 −   Φ! 𝑑𝑒𝑓𝑜𝑟𝑚 𝛿𝒑,𝒙
!
𝑑𝒙

!
 

in which Ω	
   is the domain over which the expression is 
evaluated (the combined volume of the two shapes with 
some additional padding), δpis the parameter vector 
encoding the displacement of the grid nodes, deform	
   is the 
B-Spline transformation parameterized by δp, and ΦT	
  and ΦS	
  
are the distance transforms of sample and template, 
respectively. For a given point x, the distance transform of a 
surface yields the distance of x	
   to the closest point on the 
surface. The error metric therefore penalizes deviations 
between the surfaces of the two shapes (and more generally, 
the isocontours of the distance transform, as the sum ranges 
over the entire volume). 

 
Fig. (3). From left to right this image shows the original template, 
the affinely transformed template (here scaling only), the deformed 
template, the surfacemapped template and the target sample. 

 The final constituent of the mapping function (equation 
(1) above) is surf(x), which maps a point x	
   to the closest 
surface point on the sample. Given the distance transform of 
the sample ΦS, the function surf()	
  can be expressed as owing 
to the fact that the gradient of the distance transform has unit 
length and points in direction of the surface normal of the 
closest point. 
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𝑠𝑢𝑟𝑓 𝒙 = 𝑥 −   Φ! 𝑥    ∙   ∇Φ! 𝒙  
 Applied in composition, the functions affine(), deform()	
  
and surf()	
  transform a point from the template to the sample 
with increasing fidelity. affine()	
   accounts for the coarse 
alignment, deform()	
   for the local deformation, and surf()	
  
for the remaining mismatch not captured by deform()	
  
(basically irregularities on the surface). Fig. (3) displays the 
effects of the individual mappings. 

3.2. Template Generation 

 The template is the basis for the specification of the 
correspondence features, since the points marked by the user 
on the template are transferred to the samples through the 
correspondence mapping. The template we used was created 
through the following process: 
1. By visual inspection one of the available samples is 

chosen as pseudotemplate. The particular choice is 
not of high importance, since this process converges 
quickly and independently of the initialization 
(however it is wise to choose one without obvious 
defects like incompatible topology, etc.) 

2. The mapping transformation map()	
   mapping the 
pseudotemplate to a sample is individually computed 
for each sample, and the vertices of the 
pseudotemplate are mapped to the respective samples. 

3. For each vertex of the pseudotemplate, the average 
position over all samples is calculated. 

4. A new template is created from the averaged vertices, 
using the mesh topology of the pseudotemplate (i.e. 
the vertex connectivity information is taken from the 
pseudotemplate). 

5. The steps (2, 3, 4) are repeated until convergence 
(which only takes 2 or 3 iterations) 

 Finally, the resulting template and the transformations to 
all samples are stored in the database. 

3.3. Measurements 

 The ultimate goal of the system is to allow the user to 
perform anatomical measurements over all bones of the input 
data set. Such an evaluation comprises the following the 
steps: 
1. Input specification - the user chooses the samples to 

be included in the evaluation by specifying filter 
criteria based on patient attributes (age, sex, weight, 
height, ethnic group). 

2. Feature definition - the user defines the features 
required for the evaluation. Correspondence features 
must be marked on the template shape. Derived 
features must be constructed from available features 
(e.g. plane through three points). 

3. Measurement specification - the user specifies the 
measurement to be performed. Available 
measurement types are distance, angle and radius, all 
of which work for any valid combination of features 
(e.g. distance between point/point, point/line, 
point/plane...). 

4. Evaluation - the system iterates over all bone 
specimens in the input set. For each element, it 
determines the value of the features involved 
(anatomical features are precalculated, 
correspondence features are determined through the 
mapping function described above, derived features 
are calculated on-the-fly), and performs the 
measurement. 

 The results thus obtained can be exported and are thus 
available for further statistical analysis. 

4. VALIDATION 

 The proposed system was implemented on a database 
containing 1279 femora. Of these, the preprocessing (i.e. 
generation of the non-rigid mapping transformation) was 
successfully performed for 1265 samples. The rest (about 
1% of the samples) failed for various technical reasons (e.g. 
topologically invalid input data). 
 The preprocessing was performed on standard PCs (Intel 
Core2 Duo with 2.8 GHz, 3 GB RAM) and took between 1 
and 2 minutes per single sample. 
 Validating the quality of a correspondent mapping is 
difficult, since no ground-truth information is available 
(there is no verifiably “correct” mapping of a point location 
from the template to a sample). For this reason, manually 
determined point correspondences are regarded as gold 
standard, cf. [18]. The quality of the correspondence 
mapping achieved by the proposed system was validated 
through a study in which it was compared with 
correspondence points labeled manually by medically trained 
people. 

 
Fig. (4). The 10 reference points used for validation. 

 
Fig. (5). The 10 samples used for validation. 

 For the preparation of the study, ten salient reference 
points were marked on the femur template by a medical 
expert (see Fig. 4). Most of the points chosen have some 
anatomical significance (e.g. a point marking the trochanter 
minor). Then ten femora were randomly chosen from the 
database. However, samples with obvious pathological 
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deformities were excluded. Fig. (5) displays the set of 
samples used. 
 For the actual study 12 medically trained subjects were 
given the image of the bone template with the previously 
marked points on it and than asked to identify the 
corresponding points on all 10 bone samples. To compensate 
for intrasubject variance, every participant performed the 
experiment a total of three times on a weekly schedule. Intra-
subject variance turned out to be 2.4 mm, measured as the 
average over all root mean square errors calculated for each 
specific point triple. 
 Fig. (7) displays the results of this study. The top row 
shows the points that were marked on the bone template and 
given as reference to the participants. The rows below 
display the distribution of the points marked by the subjects 
on the sample bones. In these the point to which the 
reference point was mapped by our algorithm is drawn in 
red, and the mean point of all manually marked points is 
drawn in blue. The smaller black dots indicate the individual 
points marked by the participants. 
 Fig. (8) shows the distances between the algorithmically 
mapped point and the mean of the manually marked points. 
Fig. (9) displays the corresponding root mean square (RMS) 
deviations of the manually marked points, which are a 
measure for the uncertainty with which corresponding points 
were identified (the values represent the RMS of the 
distances of the marked points from the mean point, i.e. the 
distances of the black dots from the blue point in Fig. 7). As 
can be seen, the uncertainty varies somewhat with the 
location of the template point. The point with the highest 
locational variance is Point 10, located on the femur shaft. In 
this case, there is a strong anisotropy in the distribution of 
the points: obviously, there is a larger uncertainty along the 
direction of the femoral shaft rather than orthogonal to it, 
since the ridge on which it is located (lineaaspera) possesses 
saliency only in the transversal, rather than sagittal, plane. 
Similar charachteristics can be observed for Point 9. 
 Ideally, the red and the blue points would coincide on 
every sample, which means that the algorithm and the human 
subjects (or rather, their average) agree exactly on where to 
place the corresponding points. As displayed in Fig. (8), the 
actual distances range from 1 mm to 2 mm, which seems 
very satisfactory for the intended use. 

 A natural way to assess the accuracy of the matching 
algorithm is to set the mapping error in relation to the RMS 
error of the manually marked points. Intuitively, a small 
RMS deviation but large mapping error would mean that the 
humans agree on where the point should be, but the 
algorithm places it apart. Likewise, a large RMS error but 
small mapping error would mean that the humans have no 
clear notion where the point should be, but the algorithm 
places it near their average (our assumed gold standard) 
nevertheless. Fig. (10) shows a combined plot of the two 
error values. Each point in the plot represents a unique 
(sample, template point) pairing, with the x axis denoting the 
human RMS error of this pairing, and the y axis denoting its 
mapping error. The shaded area represents the region in 
which the human RMS error exceeds the mapping error. As 
can be seen, nearly all points lie inside this area. Informally, 
this can be stated as “the uncertainty of the humans in 
finding point correspondences is higher than the mapping 
error of the algorithm”, which we take to indicate that the 
algorithmically detected correspondences are closer to the 
“gold standard” position than those obtainable from an 
average human. 

5. MEASUREMENT OF CCD ANGLE 

 As a test case scenario we set up a measurement to 
evaluate a measurement of the CCD angles of all women 
between 18 and 50 years. Our database provided 133 patients 
that fulfilled this criteria which were all selected and 
measured. Fig. (6) displays the results of this study. 

CONCLUSION 

 We have presented a system that can be used to perform 
reliable morphometric measurements over anatomical 
databases containing a large number of individual bone 
samples. The system automatically detects specific 
anatomical landmarks, and additionally determines dense 
point correspondences over the entire surface of the sample 
bones. These features can be used as primitives for various 
types of constructions (such as lines, planes, etc.) based on 
which, in turn, various quantities can be measured (angles, 
lengths, etc.). 
 Through an extensive validation study we have shown 
that the correspondence mapping, which finds corresponding  
 

 
Fig. (6). The results of an evaluation measuring the CCD angles of all women between 18 and 50 years in our database (133 samples). 
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Fig. (7). Results of the evaluation study. The algorithmically mapped point is displayed in red, the mean of the manually marked points in 
blue. The smaller black dots are the individual points marked by the human subjects. 
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Fig. (10). Comparison of mapping error and human error. The 
shaded error represents the region in which the human error 
exceeds the mapping error. 

points over the set of all samples, performs very well in 
practice and produces results that are comparable or even 
better than those achievable by manual point mapping. 
Generally, the mean error between the automatic mapping 

and the average of human-mapped points is less than 2mm, 
and considerably less than the root mean square deviation of 
the latter. Based on this we conclude that our system is well-
suited for the intended use and can produce meaningful 
results. 
 Finally a fully automated measurement of all CCD angles 
for 133 female patients has been performed as a test case 
scenario for our presented method. 
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